Isser A, Silver AB, Pruitt HC, et al. Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy. Nat Commun. 2022;13(1):6086. Published 2022 Oct 14. doi:10.1038/s41467-022-33597-y

Chaisawangwong W, Wang H, Kouo T, et al. Cross-reactivity of SARS-CoV-2- and influenza A-specific T cells in individuals exposed to SARS-CoV-2. JCI Insight. 2022;7(18):e158308. Published 2022 Sep 22. doi:10.1172/jci.insight.158308

VanDyke D, Taylor JD, Kaeo KJ, Hunt J, Spangler JB. Biologics-based degraders – an expanding toolkit for targeted-protein degradation [published online ahead of print, 2022 Sep 27]. Curr Opin Biotechnol. 2022;78:102807. doi:10.1016/j.copbio.2022.102807

Luly KM, Yang H, Lee SJ, et al. Poly(Beta-Amino Ester)s as High-Yield Transfection Reagents for Recombinant Protein Production. Int J Nanomedicine. 2022;17:4469-4479. Published 2022 Sep 23. doi:10.2147/IJN.S377371

Li S, Hu Y, Li A, et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat Commun. 2022;13(1):5561. Published 2022 Sep 23. doi:10.1038/s41467-022-33157-4

Zhu Y, Shen R, Vuong I, et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expressionNat Commun. 2022;13(1):4282. Published 2022 Jul 25. doi:10.1038/s41467-022-31993-y

Casciola-Rosen L, Thiemann DR, Andrade F, et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022;7(9):e158362. Published 2022 May 9. doi:10.1172/jci.insight.158362

Li L, Zhang Y, Zhou Y, et al. Quaternary nanoparticles enable sustained release of bortezomib for hepatocellular carcinoma [published online ahead of print, 2022 May 21]. Hepatology. 2022;10.1002/hep.32584. doi:10.1002/hep.32584

de Rutte J, Dimatteo R, Archang MM, et al. Suspendable Hydrogel Nanovials for Massively Parallel Single-Cell Functional Analysis and Sorting [published online ahead of print, 2022 Mar 24]. ACS Nano. 2022;10.1021/acsnano.1c11420. doi:10.1021/acsnano.1c11420

Singh AK, Praharaj M, Lombardo KA, et al. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun. 2022;13(1):878. Published 2022 Feb 15. doi:10.1038/s41467-022-28509-z

Ludwig SD, Bernstein ZJ, Agatemor C, et al. A versatile design platform for glycoengineering therapeutic antibodies. MAbs. 2022;14(1):2095704. doi:10.1080/19420862.2022.2095704

Dammen-Brower K, Epler P, Zhu S, et al. Strategies for Glycoengineering Therapeutic Proteins. Front Chem. 2022;10:863118. Published 2022 Apr 13. doi:10.3389/fchem.2022.863118

Almodovar Cruz GE, Kaunitz G, Stein JE, et al. Immune cell subsets in interface cutaneous immune-related adverse events associated with anti-PD-1 therapy resemble acute graft versus host disease more than lichen planus. J Cutan Pathol. 2022;49(8):701-708. doi:10.1111/cup.14242

VanDyke D, Iglesias M, Tomala J, et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 2022;41(3):111478. doi:10.1016/j.celrep.2022.111478

Sargunas PR, Spangler JB. Joined at the hip: The role of light chain complementarity determining region 2 in antibody self-association. Proc Natl Acad Sci U S A. 2022;119(28):e2208330119. doi:10.1073/pnas.2208330119

Krohl PJ, Spangler JB. A Hybrid Adherent/Suspension Cell-Based Selection Strategy for Discovery of Antibodies Targeting Membrane Proteins. Methods Mol Biol. 2022;2491:195-216. doi:10.1007/978-1-0716-2285-8_11

Paul S, Pearlman AH, Douglass J, et al. TCR β chain-directed bispecific antibodies for the treatment of T cell cancers. Sci Transl Med. 2021;13(584):eabd3595. doi:10.1126/scitranslmed.abd3595

Hwang MS, Miller MS, Thirawatananond P, et al. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigensNat Commun. 2021;12(1):5271. Published 2021 Sep 6. doi:10.1038/s41467-021-25605-4

Douglass J, Hsiue EH, Mog BJ, et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol. 2021;6(57):eabd5515. doi:10.1126/sciimmunol.abd5515

Berry S, Giraldo NA, Green BF, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockadeScience. 2021;372(6547):eaba2609. doi:10.1126/science.aba2609

Hsiue EH, Wright KM, Douglass J, et al. Targeting a neoantigen derived from a common TP53 mutationScience. 2021;371(6533):eabc8697. doi:10.1126/science.abc8697

Caushi JX, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers [published correction appears in Nature. 2021 Oct;598(7881):E1]. Nature. 2021;596(7870):126-132. doi:10.1038/s41586-021-03752-4

Hu Y, Zhu Y, Sutherland ND, et al. Size-Controlled and Shelf-Stable DNA Particles for Production of Lentiviral VectorsNano Lett. 2021;21(13):5697-5705. doi:10.1021/acs.nanolett.1c01421

Liu HW, Hu Y, Ren Y, et al. Scalable Purification of Plasmid DNA Nanoparticles by Tangential Flow Filtration for Systemic Delivery. ACS Appl Mater Interfaces. 2021;13(26):30326-30336. doi:10.1021/acsami.1c05750

Ahn HH, Carrington C, Hu Y, et al. Nanoparticle-mediated tumor cell expression of mIL-12 via systemic gene delivery treats syngeneic models of murine lung cancersSci Rep. 2021;11(1):9733. Published 2021 May 6. doi:10.1038/s41598-021-89124-4

Ahn HH, Carrington C, Hu Y, et al. Nanoparticle-mediated tumor cell expression of mIL-12 via systemic gene delivery treats syngeneic models of murine lung cancers. Sci Rep. 2021;11(1):9733. Published 2021 May 6. doi:10.1038/s41598-021-89124-4 (work enabled by the center).

Berry S, Giraldo NA, Green BF, et al. Analysis of multispectral imaging with the AstroPath platform informs efficacy of PD-1 blockade. Science. 2021;372(6547):eaba2609. doi:10.1126/science.aba2609

Dykema AG, Zhang B, Woldemeskel BA, et al. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J Clin Invest. 2021;131(10):e146922. doi:10.1172/JCI146922

Est-Witte SE, Farris AL, Tzeng SY, et al. Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells. Acta Biomater. 2020;113:279-288. doi:10.1016/j.actbio.2020.06.042

Green JJ. Immunoengineering has arrived. J Biomed Mater Res A. 2021;109(4):397-403. doi:10.1002/jbm.a.37041

Hou J, Yang R, Vuong I, Li F, Kong J, Mao HQ. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater. 2021;130:1-16. doi:10.1016/j.actbio.2021.05.043 (work enabled by the center).

Howard GP, Bender NG, Khare P, et al. Immunopotentiation by lymph-node targeting of a malaria transmission-blocking nanovaccine. Front Immunol. 2021;12:729086. Published 2021 Aug 27. doi:10.3389/fimmu.2021.729086 (work enabled by the center).

Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials. 2021;268:120584. doi:10.1016/j.biomaterials.2020.120584

Karlsson J, Rhodes KR, Green JJ, Tzeng SY. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities. Expert Opin Drug Deliv. 2020;17(10):1395-1410. doi:10.1080/17425247.2020.1796628

Karlsson J, Tzeng SY, Hemmati S, et al. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy. Adv Funct Mater. 2021;31(17):2009768. doi:10.1002/adfm.202009768

Kim J, Vaughan HJ, Zamboni CG, Sunshine JC, Green JJ. High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA. J Control Release. 2021;337:105-116. doi:10.1016/j.jconrel.2021.05.047

Leone RD, Powell JD. Fueling the Revolution: Targeting metabolism to enhance immunotherapy. Cancer Immunol Res. 2021;9(3):255-260. doi:10.1158/2326-6066.CIR-20-0791

Luly KM, Choi J, Rui Y, Green JJ, Jackson EM. Safety considerations for nanoparticle gene delivery in pediatric brain tumors. Nanomedicine (Lond). 2020;15(18):1805-1815. doi:10.2217/nnm-2020-0110

McCurdy SR, Radojcic V, Tsai HL, et al. Signatures of GVHD and relapse after post-transplant cyclophosphamide revealed by immune profiling and machine learning [published online ahead of print, 2021 Oct 17]. Blood. 2021;blood.2021013054.

Mo F, Yu Z, Li P, et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature. 2021;597(7877):544-548. doi:10.1038/s41586-021-03861-0

Neshat SY, Tzeng SY, Green JJ. Gene delivery for immunoengineering. Curr Opin Biotechnol. 2020;66:1-10. doi:10.1016/j.copbio.2020.05.008

Rhodes KR, Isser A, Hickey JW, et al. Biodegradable cationic polymer blends for fabrication of enhanced artificial antigen presenting cells to treat melanoma. ACS Appl Mater Interfaces. 2021;13(7):7913-7923. doi:10.1021/acsami.0c19955

Rhodes KR, Meyer RA, Wang J, Tzeng SY, Green JJ. Biomimetic tolerogenic artificial antigen presenting cells for regulatory T cell induction. Acta Biomater. 2020;112:136-148. doi:10.1016/j.actbio.2020.06.004

Routkevitch D, Sudhakar D, Conge M, et al. Efficiency of cytosolic delivery with Poly(β-amino ester) nanoparticles is dependent on the effective pKa of the polymer. ACS Biomater Sci Eng. 2020;6(6):3411-3421. doi:10.1021/acsbiomaterials.0c00271

Shenderov K, Collins SL, Powell JD, Horton MR. Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 2021;131(2):e143226. doi:10.1172/JCI143226

Thompson EA, Cascino K, Ordonez AA, et al. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Rep. 2021;34(11):108863. doi:10.1016/j.celrep.2021.108863

Thompson EA, Powell JD. Inhibition of the adenosine pathway to potentiate cancer immunotherapy: Potential for combinatorial approaches. Annu Rev Med. 2021;72:331-348. doi:10.1146/annurev-med-060619-02315

Tzeng SY, Patel KK, Wilson DR, Meyer RA, Rhodes KR, Green JJ. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci U S A. 2020;117(8):4043-4052. doi:10.1073/pnas.1916039117

Vaughan HJ, Zamboni CG, Radant NP, et al. Poly(beta-amino ester) nanoparticles enable tumor-specific TRAIL secretion and a bystander effect to treat liver cancer. Mol Ther Oncolytics. 2021;21:377-388. Published 2021 Apr 16. doi:10.1016/j.omto.2021.04.004

Hickey JW, Isser A, Salathe SF, Gee KM, Hsiao MH, Shaikh W, Uzoukwu NC, Bieler JG, Mao HQ, Schneck JP. Adaptive Nanoparticle Platforms for High Throughput Expansion and Detection of Antigen-Specific T cells. Nano Lett2020 Jun 28;doi: 10.1021/acs.nanolett.0c01511. – Read more about this research and the featured cover art.

Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer2020 Jul 6;doi: 10.1038/s41568-020-0273-y. [Epub ahead of print] Review. PubMed PMID: 32632251.

Yang HY, Wu CY, Powell JD, Lu KL. Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci2020 Jun 4;21(11)doi: 10.3390/ijms21114030.

Bever KM, Borazanci EH, Thompson EA, Durham JN, Pinero K, Jameson GS, Vrana A, Liu M, Wilt C, Wu AA, Fu W, Wang H, Yin Y, Leal JP, Jesus-Acosta A, Zheng L, Laheru DA, Von Hoff DD, Jaffee EM, Powell JD, Le DT. An exploratory study of metformin with or without rapamycin as maintenance therapy after induction chemotherapy in patients with metastatic pancreatic adenocarcinoma. Oncotarget2020 May 26;11(21):1929-1941doi: 10.18632/oncotarget.27586.

Bessell CA, Isser A, Havel JJ, Lee S, Bell DR, Hickey JW, Chaisawangwong W, Glick Bieler J, Srivastava R, Kuo F, Purohit T, Zhou R, Chan TA, Schneck JP. Commensal bacteria stimulate antitumor responses via T cell cross-reactivity. JCI Insight2020 Apr 23;5(8)doi: 10.1172/jci.insight.135597. 

Cheng CH, Lee CF, Oh BC, Furtmüller GJ, Patel CH, Brandacher G, Powell JD. Targeting Metabolism as a Platform for Inducing Allograft Tolerance in the Absence of Long-Term Immunosuppression. Front Immunol2020;11:572doi: 10.3389/fimmu.2020.00572.

Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, Englert JM, Arwood ML, Wen J, Chan-Li Y, Tenora L, Majer P, Rais R, Slusher BS, Horton MR, Powell JD. Targeting glutamine metabolism enhances tumor specific immunity by modulating suppressive myeloid cells [published online ahead of print, 2020 Apr 23]. J Clin Invest. 2020;131859. doi:10.1172/JCI131859

Ichikawa J, Yoshida T, Isser A, Laino AS, Vassallo M, Woods D, Kim S, Oelke M, Jones K, Schneck JP, Weber JS. Rapid Expansion of Highly Functional Antigen-Specific T cells from Melanoma Patients by Nanoscale Artificial Antigen Presenting Cells. Clin Cancer Res. 2020 Apr 2;. doi: 10.1158/1078-0432.CCR-19-3487.

Tzeng SY, Patel KK, Wilson DR, Meyer RA, Rhodes KR, Green JJ. In situ genetic engineering of tumors for long-lasting and systemic immunotherapy. Proc Natl Acad Sci U S A. 2020 Feb 7;. doi: 10.1073/pnas.1916039117.

Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell JD. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science2019 Nov 22;366(6468):1013-1021doi: 10.1126/science.aav2588. Epub 2019 Nov 7. 

Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov2019 Sep;18(9):669-688doi: 10.1038/s41573-019-0032-5. Epub 2019 Jul 30. Review.